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IMPORTANCE Retinopathy of prematurity (ROP) is a leading cause of childhood blindness
worldwide. The decision to treat is primarily based on the presence of plus disease, defined as
dilation and tortuosity of retinal vessels. However, clinical diagnosis of plus disease is highly
subjective and variable.

OBJECTIVE To implement and validate an algorithm based on deep learning to automatically
diagnose plus disease from retinal photographs.

DESIGN, SETTING, AND PARTICIPANTS A deep convolutional neural network was trained using
a data set of 5511 retinal photographs. Each image was previously assigned a reference
standard diagnosis (RSD) based on consensus of image grading by 3 experts and clinical
diagnosis by 1 expert (ie, normal, pre–plus disease, or plus disease). The algorithm was
evaluated by 5-fold cross-validation and tested on an independent set of 100 images. Images
were collected from 8 academic institutions participating in the Imaging and Informatics in
ROP (i-ROP) cohort study. The deep learning algorithm was tested against 8 ROP experts,
each of whom had more than 10 years of clinical experience and more than 5 peer-reviewed
publications about ROP. Data were collected from July 2011 to December 2016. Data were
analyzed from December 2016 to September 2017.

EXPOSURES A deep learning algorithm trained on retinal photographs.

MAIN OUTCOMES AND MEASURES Receiver operating characteristic analysis was performed to
evaluate performance of the algorithm against the RSD. Quadratic-weighted κ coefficients
were calculated for ternary classification (ie, normal, pre–plus disease, and plus disease) to
measure agreement with the RSD and 8 independent experts.

RESULTS Of the 5511 included retinal photographs, 4535 (82.3%) were graded as normal, 805
(14.6%) as pre–plus disease, and 172 (3.1%) as plus disease, based on the RSD. Mean (SD) area
under the receiver operating characteristic curve statistics were 0.94 (0.01) for the diagnosis
of normal (vs pre–plus disease or plus disease) and 0.98 (0.01) for the diagnosis of plus
disease (vs normal or pre–plus disease). For diagnosis of plus disease in an independent test
set of 100 retinal images, the algorithm achieved a sensitivity of 93% with 94% specificity.
For detection of pre–plus disease or worse, the sensitivity and specificity were 100% and
94%, respectively. On the same test set, the algorithm achieved a quadratic-weighted κ
coefficient of 0.92 compared with the RSD, outperforming 6 of 8 ROP experts.

CONCLUSIONS AND RELEVANCE This fully automated algorithm diagnosed plus disease in ROP
with comparable or better accuracy than human experts. This has potential applications in
disease detection, monitoring, and prognosis in infants at risk of ROP.
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R etinopathy of prematurity (ROP) is a proliferative reti-
nal vasculardiseasethataffectsapproximatelytwo-thirds
of premature infants weighing fewer than 1250 g at birth.

Most cases of ROP are mild and resolve without intervention
within several months. However, 5% to 10% of cases progress to
severe ROP, which can lead to retinal detachment and permanent
blindness if untreated. A major challenge is that clinical ROP di-
agnosis is based solely on the appearance of retinal vessels on di-
latedophthalmoscopicexaminationattheneonatalintensivecare
unitbedside,whichishighlysubjectiveandqualitative.Themost
critical feature of severe, treatment-requiring ROP is the presence
of plus disease, which was defined during the 1980s by an inter-
national consensus panel as arterial tortuosity and venous dila-
tion of the posterior retinal vessels that is greater than or equal
to that found in a standard published retinal photograph.1,2 In
2005, a revised international consensus panel established a 3-tier
grading classification of plus disease (ie, normal, pre–plus dis-
ease, and plus disease) to capture an intermediate level of sever-
ity as an additional prognostic indicator.3-5 Several major stud-
iesfundedbytheNationalInstitutesofHealth1,4 andseveralother
clinical trials6 have shown that severe ROP (characterized by plus
disease) may be effectively treated with laser photocoagulation1,4

or with intravitreal injection of pharmacological agents, such as
bevacizumab.6 Therefore, it is essential to diagnose plus disease
in an accurate and timely manner.

Retinopathy of prematurity remains a leading cause of
childhood blindness worldwide. There are several challenges
to delivery of care: (1) clinical diagnosis is highly variable, and
high interobserver inconsistency on plus disease diagnosis,
even among ROP experts, has been well-documented7,8; (2) the
number of ophthalmologists and neonatologists willing and
able to manage ROP is insufficient because of logistical diffi-
culties, the extensive training process, time-consuming ex-
amination, and significant malpractice liability9-12; and (3) the
incidence of ROP worldwide is rising because of advances in
neonatology.13 These challenges have stimulated research in
developing quantitative and objective approaches to ROP di-
agnosis using computer-based image analysis (CBIA).14-18 Al-
though multiple groups have developed CBIA systems for plus
disease diagnosis in ROP, no automated systems have dem-
onstrated diagnostic performance equivalent to practicing
clinicians.14 A fully automated, validated CBIA system would
improve quality of care by providing diagnostic assistance to
clinicians and could improve accessibility of care by creating
potential for large-scale automated screening systems.

Deep learning (DL) has become the state-of-the-art solu-
tion in a wide range of CBIA problems.19 Convolutional neu-
ral networks (CNNs) have been successfully used for auto-
mated diagnosis of skin cancer,20 glioma,21 lymph node
metastases,22 macular degeneration,23-25 and diabetic
retinopathy.26,27 Convolutional neural networks have also
been used to predict a range of cardiovascular risk factors
from retinal fundus photographs that were previously not
thought to be quantifiable.28 Furthermore, they have shown
promising results for 2-level diagnosis of plus disease in
ROP.29 The purpose of this article is to implement and evalu-
ate a CNN-based DL approach for 3-level diagnosis (ie, nor-
mal, pre–plus disease, and plus disease) in ROP. We trained

CNNs on a large data set of clinical ROP images from 8 differ-
ent institutions and compared their diagnostic performance
with expert human graders.

Methods
This study was approved by the institutional review board at
the coordinating center (Oregon Health and Science Univer-
sity, Portland) and at each of 8 study centers (Columbia Uni-
versity, New York, New York; University of Illinois at Chicago;
William Beaumont Hospital, Royal Oak, Michigan; Children’s
Hospital Los Angeles, Los Angeles, California; Cedars-Sinai
Medical Center, Los Angeles, California; University of Miami,
Miami, Florida; Weill Cornell Medical Center, New York, New
York; and Asociacion para Evitar la Ceguera en Mexico, Mexico
City, Mexico). This study was conducted in accordance with
the Declaration of Helsinki.30 Written informed consent was
obtained from parents of all infants enrolled.

Data Sets
Training, validation, and test data sets were created from a da-
tabase of almost 6000 deidentified posterior retinal images ob-
tained using a commercially available camera (RetCam; Na-
tus Medical Incorporated) as part of the multicenter Imaging
and Informatics in Retinopathy of Prematurity (i-ROP) cohort
study. A standard imaging protocol was used by all 8 study cen-
ters, and the images were obtained between July 2011 and De-
cember 2016. Although images were obtained in 5 standard
fields of view (ie, posterior, nasal, temporal, superior, and in-
ferior), only posterior images were used in this analysis.

Image Grading
A reference standard diagnosis (RSD) was assigned to each im-
age using previously published methods31 based on indepen-
dent image-based diagnoses by 3 trained graders (2 ophthal-
mologists and 1 study coordinator) and the clinical diagnosis
(obtained by full evaluation, including dilated ophthalmo-
scopic examination) by an expert ophthalmologist. Images
were classified as normal, pre–plus disease, or plus disease. Of

Key Points
Question Can an algorithm based on deep learning achieve
expert-level performance at diagnosing plus disease in retinopathy
of prematurity?

Finding In this technology evaluation study including 5511 retinal
photographs, using 5-fold cross-validation, the algorithm achieved
mean areas under the receiver operating characteristic curve of
0.94 and 0.99 for the diagnoses of normal and plus disease,
respectively. On an independent test set of 100 images, the
algorithm achieved 91% accuracy and a quadratic-weighted κ
coefficient of 0.92, outperforming 6 of 8 retinopathy of
prematurity experts.

Meaning These findings suggest the proposed algorithm can
objectively diagnose plus disease with a proficiency comparable
with human experts.
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the 5511 included retinal photographs, 4535 (82.3%) were
graded as normal, 805 (14.6%) as pre–plus disease, and 172
(3.1%) as plus disease, based on the RSD. The RSD was used as
the basis for training a CNN. Images were excluded if at least
2 of 3 image graders labeled them as unacceptable for diagno-
sis or if there was stage 4 or 5 ROP (ie, partial or total retinal
detachment). In these advanced stages, diagnosis of plus dis-
ease for ROP screening is less relevant, and retinal blood ves-
sels are difficult to visualize.

Algorithm Development
The algorithm used 2 neural network architectures, which
are complex functions designed to receive images as input
(ie, a grid of pixel intensity values), and were trained to pro-
duce some desired output. This training process involved
presenting the network with corresponding RSDs, which
were used to adjust the network’s numerous internal para-
meters to output the correct diagnoses. Both networks used
by our algorithm were CNNs, which are highly specialized
for image data. Convolutional neural networks operate by
learning and applying a series of filters that emphasize
image features that are relevant to the task at hand. The first
of the CNNs used by our algorithm was a vessel segmenta-
tion network, which was trained to output a new image with
pixel intensities ranging between 0 and 1. Each pixel value
represents the probability that it belongs to a retinal vessel.
This process effectively eliminates variations in pigmenta-
tion, illumination, and nonvascular pathology, which are
commonly observed in images from patients with ROP. In
this work, we used the U-Net architecture32 (eMethods 1 in
the Supplement).

The second CNN was trained to diagnose plus disease from
the preprocessed images. Through a series of alternating fil-
tering and down sampling operations, a classification net-
work reduced images to a set of features, which were trans-
formed into 3 values representing the probability of that image
corresponding to normal, pre–plus disease, or plus disease. We
used the Inception version 1 architecture by Szegedy et al,33

which was pretrained on the ImageNet database of 1.2 mil-
lion images from 1000 classes.34 This process of transfer learn-
ing has been shown to improve classification performance be-
cause of the network having learned highly generalizable image
features from an unrelated but large and highly diverse data
set of images (eMethods 2 in the Supplement).35

Evaluation
The data set was subdivided into 5 near-equal parts and used
to train 5 separate classification CNNs (ie, 5-fold cross-
validation). The data were divided to ensure that images ac-
quired from the same patient (eg, left and right eyes or from
multiple sessions) were not split across training and valida-
tion data. A detailed breakdown of the training and valida-
tion sets is provided in the Table. Each CNN was trained on 4
splits (80%) and tested on the remaining split (20%) to assess
the algorithm’s ability to generalize to previously unseen im-
ages from different patients. The cross-validated CNNs were
evaluated using receiver operator characteristic (ROC) curves.
Areas under the ROC curve were used to determine the bi-
nary outcomes of normal (vs pre–plus disease/plus disease) and
plus disease (vs normal/pre–plus disease) compared with the
RSD.

Performance of the best model ( based on cross-
validation) for plus disease diagnosis was further evaluated
against 8 international ROP experts on an independent test set
of 100 images, described previously with 54 normal, 31 pre–
plus disease, and 15 plus disease images.8,36 These images were
not included in any of the training or validation sets. Each par-
ticipating expert had more than 10 years of clinical experi-
ence in ROP care and had published more than 5 peer-
reviewed articles on ROP. Five of 8 experts served as principal
investigators for the multicenter Early Treatment for ROP
study.2,4 Interexpert agreement was assessed using quadratic-
weighted κ coefficients and interpreted using a commonly ac-
cepted scale: 0 to 0.20 indicated slight agreement; 0.21 to 0.40,
fair agreement; 0.41 to 0.60, moderate agreement; 0.61 to 0.80,
substantial agreement; and 0.81 to 1.0, near-perfect
agreement.37 κ Scores for agreement between the best-
performing CNN from cross-validation were calculated for all
experts, the 8 expert consensus (mode) diagnosis (there were
no ties), and the RSD.

Interpretation of Learned Features
Following training, image features learned by the classifica-
tion network were extracted for all images in the training set
as a high-dimensional vector. Feature vectors were visual-
ized in 2 dimensions using t-distributed stochastic neighbor
embedding (t-SNE), a dimensionality reduction technique that
attempts to minimize distances between similar features while
maximizing distances between dissimilar features.38 This t-SNE

Table. Breakdown of Training and Validation Data Setsa

Split

No.

Training Data Set Validation Data Set

Patients Eyes Normal
Pre–Plus
Disease

Plus
Disease Patients Eyes Normal

Pre–Plus
Disease

Plus
Disease

1 718 1409 3668 653 148 180 353 867 151 24

2 718 1405 3640 673 140 180 357 895 131 32

3 710 1392 3552 628 125 188 370 983 176 47

4 713 1400 3580 597 145 185 362 955 207 27

5 716 1408 3673 642 126 182 354 862 162 46
a Each training/validation split constitutes an approximate 80:20 split of the 5511 images, retaining the underlying distribution of plus disease prevalence.
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embedding was visualized as a 2-dimensional scatter plot, with
each point corresponding to an image in feature space
(eMethods 3 in the Supplement).

Results
Automated Diagnosis of Plus Disease Using Deep Learning
Figure 1 displays ROC curves for 5 CNNs produced using 5-fold
cross-validation, each of which was evaluated on an indepen-
dent test data set (mean [SD] retinal photographs, 1113 [70]).
The mean (SD) values of the 5 areas under the ROC curve were
0.94 (0.01) for the diagnosis of normal (vs pre–plus disease/
plus disease) and 0.98 (0.01) for diagnosis of plus disease (vs
normal/pre–plus disease).

Comparison With Expert Diagnosis
Figure 2 summarizes diagnostic performance of the best-
performing model from cross-validation (split 3; Figure 1) on
100 images, with diagnoses from 8 international ROP ex-
perts. Sensitivity and specificity of the DL algorithm for de-
tecting plus disease were 93% and 94%, respectively. For de-
tection of pre–plus disease or worse, the sensitivity and
specificity were 100% and 94%, respectively. As shown in
Figure 2A, the DL algorithm diagnosed 91 of 100 images (91.0%)
correctly, whereas 8 experts had an average accuracy of 82.0%
(range, 77-94).36 None of the 9 misclassifications resulted in
an image with plus disease being identified as normal or vice
versa. The quadratic-weighted κ score for the DL algorithm for
agreement with the RSD was 0.92, which was better than 6 of
8 experts (mean [range] agreement compared with RSD, 0.85
[0.80-0.95]) (Figure 2B). Receiver operator characteristic analy-
sis (Figure 2C) displays the behavior of the DL algorithm for
diagnosis of plus disease as a function of different operating
thresholds, with the operating points of each of the 8 experts
shown for reference. Most of the experts lie on or near the ROC

curve, which suggests the algorithm may be tuned to mimic
any individual expert.

Interpretation of Learned Features
The t-SNE was used to visualize high-dimensional features
learned by the DL algorithm in 2 dimensions (Figure 3). Each
point on the scatter plot corresponds to an individual retinal
image, where similar images (based on their features) appear
nearer to one another than dissimilar images. The colored RSD
labels are used only for visualization to denote the different
clusters. The t-SNE demonstrates qualitative separation among
different disease grades. Normal and plus disease form 2 dis-
tinct clusters with pre–plus disease bridging them, demon-
strating a continuum of disease severity.

Discussion
This study presents the results of a DL-based algorithm trained
to diagnose plus disease automatically using retinal images
from premature infants at risk of ROP. The key findings are (1)
this fully automated CBIA system can diagnose plus disease
with comparable or better proficiency than ROP experts, and
(2) analysis of features using DL provides insight about the di-
agnostic process used by experts. Evidence-based ROP man-
agement guidelines are based on treatment for presence of plus
disease to prevent visual loss and blindness,1,2 yet inconsis-
tency in plus disease diagnosis leads to clinically significant
differences in management.39 In 2007, Chiang et al7 investi-
gated plus disease diagnosis for 22 ophthalmology experts on
a data set of 34 images and found unanimous agreement on
plus disease in only 4 of 34 images (12%). Since then, several
publications have reported similar results, with mean weighted
κ statistics for plus disease diagnosis ranging from fair
(0.21-0.40)36,40 to moderate (0.41-0.60)7,41 agreement for ex-
pert pairs. It had been unclear whether these differences trans-

Figure 1. Receiver Operating Characteristic (ROC) Curves for Diagnosis of Plus Disease in Retinopathy of Prematurity
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lated to real-world differences in treatment or outcomes, since
this problem (systematic bias in plus disease diagnosis) rep-
resents an inherent limitation within ROP clinical trials. How-
ever, recent secondary analysis from the Benefits of Oxygen
Saturation Targeting-II trials39 found variation in diagnosis of
treatment-requiring ROP among international experts due to
differences in plus disease diagnosis. Objective assessment of
disease severity, such as with our CNN-based image analysis
system, has potential to improve clinical outcomes.

The i-ROP DL algorithm outperformed not only most ex-
perts in this study (Figure 2B) but also all prior CBIA systems
in ROP.14 We have previously published results from a differ-
ent system using machine learning methods rather than CNN-
based methods,42,43 which was able to accurately diagnose pre–
plus disease and plus disease but only by using manually
segmented images in which retinal vessels were traced by hand
and input into the system. Other systems are semiautomated
(ie, require manual identification of the optic disc and a few
key vessel segments) but have only weakly correlated with
2-level diagnosis (not plus disease vs plus disease).14,16 In con-
trast, our current system performed almost perfectly and per-
formed better than most experts on the test set of 100 images
at 3-level diagnosis (normal vs pre–plus disease vs plus dis-
ease) using raw image files without the need for manual seg-
mentation. We also observed that each of the experts’ oper-
ating points for sensitivity and specificity of diagnosis of plus
disease fell on or near the ROC curve for the DL algorithm
(Figure 2C), suggesting that the diagnosis of individual ex-
perts may be predicted by tuning the operating point and/or
slightly retraining the CNN to better understand that expert’s
unique biases.44

Interpretation of DL outputs may facilitate better under-
standing of the cognitive processes used to make diagnoses
in image-based diagnostic specialties, such as ophthalmol-
ogy, dermatology, pathology, and radiology.20,26,45 In ROP,
studies have demonstrated that experts deviate from the
published and internationally accepted definition of plus
disease in several ways42 and that experts explain their diag-
noses using terms such as “experience” and “clinical
judgment.”42,43,46 In the same way, neural networks are
often regarded as black boxes, since the features used by the
multiple layers of the model are not readily interpretable.
The t-SNE visualization (Figure 3) of image features learned
by the algorithm supports the concept of a phenotypic con-
tinuum of disease severity, which has been proposed as an
explanation for interobserver differences between disease
categories.8,36 This is a particularly interesting finding
because the CNN was trained with the categorical labels
“normal,” “pre–plus disease,” and “plus disease” without
intrinsic ordering as part of the RSD. In other words, the sys-
tem learned that normal, pre–plus disease, and plus disease
categories reflect a continuum, and our results demonstrate
that expert behavior is predictable based on knowing where
along that continuum each expert distinguishes between
those categories (Figure 1). Further analysis of the CNN using
saliency and class activation maps may reveal features and
locations that are informative of ROP pathophysiology,
potentially serving as an educational tool for clinicians.

Figure 2. Diagnostic Performance of the Imaging and Informatics
in Retinopathy of Prematurity (i-ROP) Deep Learning (DL) Algorithm
and 8 ROP Experts Compared With the Reference Standard Diagnosis
(RSD) on a Data Set of 100 Images
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For several reasons, modeling a continuous phenotype
using a DL-derived continuous score rather than discrete cat-
egories (eg, normal, pre–plus disease, and plus disease) may
improve clinical care in ROP. First, a continuous score pro-
vides more granularity for determining relative disease pro-
gression or regression, which may be lost within subjective
2-level or 3-level disease categories because individual eyes
may measurably worsen, remain the same, or improve over
time. Additionally, physicians are accustomed to incorporat-
ing continuous biomarkers (eg, blood pressure) into clinical de-
cision-making. A plus disease score in the upper range may or
may not lead to treatment for ROP but could also be put into
context of other known risk factors, pace and progression of
disease over time, clinical judgment, and published valida-
tion studies. Finally, DL-based objective disease metrics may
be incorporated into screening strategies to automatically iden-
tify clinically relevant disease and initiate appropriate refer-
ral. Incorporating DL-based screening into fundus camera sys-
tems and telemedicine platforms for ROP and other image-
based diseases may improve the objectivity, accuracy, and
efficiency of health care delivery.

Limitations
This study has several limitations. Convolutional neural net-
works are only as robust as the data on which they are trained.
In this case, we used nearly 6000 images from 8 different in-
stitutions, each with a rigorous RSD, which was itself a con-
sensus diagnosis of 4 separate diagnoses (image-based diag-
nosis by 3 experts and ophthalmoscopic diagnosis by 1 expert),
which should improve the external validity of our system. It
is unknown how factors such as image quality, resolution, dif-
ferent camera systems, and field of view may affect the out-

put of the i-ROP DL system.47 These topics warrant further
study. Image preprocessing methods are specific for each data
set and CNN, representing a critical step in image classifica-
tion tasks that eliminates variations, which may introduce bias
during model training. In our data set, such variations in-
cluded differences in retinal pigmentation, brightness, con-
trast, and textual annotations. Other preprocessing and post-
processing methods, such as binarization and morphological
operations, may improve generalizability of our algorithm and
could be the subject of future analyses. Our system currently
only classifies plus disease, one component of the Interna-
tional Classification of Retinopathy of Prematurity system.3 Ide-
ally, a fully automated ROP screening platform could classify
zone, stage, and overall disease category as well as predict need
for treatment. These are the topics of ongoing study.

Conclusions
These results demonstrate that the incorporation of deep neu-
ral networks may enable automated screening and diagnosis for
ROP with high accuracy and repeatability. These results may
change the way ROP is diagnosed in the future and are broadly
relevant to other medical fields that rely primarily on subjective
image-based diagnostic features. Future work will involve com-
parison of features learned by the DL algorithm with known mor-
phological features, evaluation of deep neural networks for other
components of the ROP clinical examination, and application to
other retinal diseases. Incorporation of this technology into fun-
dus cameras or telemedicine systems could provide advice at the
point of care and has the potential to improve the quality, acces-
sibility, and cost of ROP screening worldwide.
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features that roughly separate the 3 diagnoses and that they appear to run along a continuum of disease
severity.
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